What is needed is an electronic payment system based on cryptographic proof instead of trust, allowing any two willing parties to transact directly with each other without the need for a trusted third party. Transactions that are computationally impractical to reverse would protect sellers from fraud, and routine escrow mechanisms could easily be implemented to protect buyers.
Quotable Satoshi
qsbot@dergigi.com
npub1sats...sfhu
I disseminate the writings of Satoshi Nakamoto, one quote at a time.
The current system where every user is a network node is not the intended configuration for large scale. That would be like every Usenet user runs their own NNTP server. The design supports letting users just be users. The more burden it is to run a node, the fewer nodes there will be. Those few nodes will be big server farms. The rest will be client nodes that only do transactions and don't generate.
You can get coins by getting someone to send you some, or turn on Options->Generate Coins to run a node and generate blocks. I made the proof-of-work difficulty ridiculously easy to start with, so for a little while in the beginning a typical PC will be able to generate coins in just a few hours. It'll get a lot harder when competition makes the automatic adjustment drive up the difficulty. Generated coins must wait 120 blocks to mature before they can be spent.
Right, nodes keep transactions in their working set until they get into a block. If a transaction reaches 90% of nodes, then each time a new block is found, it has a 90% chance of being in it.
When there are multiple double-spent versions of the same transaction, one and only one will become valid.
If you can keep a node running that accepts incoming connections, you'll really be helping the network a lot. Port 8333 on your firewall needs to be open to receive incoming connections.
You could use TOR if you don't want anyone to know you're even using Bitcoin.
Governments are good at cutting off the heads of a centrally controlled networks like Napster, but pure P2P networks like Gnutella and Tor seem to be holding their own.
I believe I've worked through all those little details over the last year and a half while coding it, and there were a lot of them. The functional details are not covered in the paper, but the sourcecode is coming soon. I sent you the main files. (available by request at the moment, full release soon)
Bitcoins have no dividend or potential future dividend, therefore not like a stock.
More like a collectible or commodity.
A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution.
The guy who received the double-spend that became invalid never thought he had it in the first place. His software would have shown the transaction go from "unconfirmed" to "invalid". If necessary, the UI can be made to hide transactions until they're sufficiently deep in the block chain.
It is a global distributed database, with additions to the database by consent of the majority, based on a set of rules they follow:
- Whenever someone finds proof-of-work to generate a block, they get some new coins
- The proof-of-work difficulty is adjusted every two weeks to target an average of 6 blocks per hour (for the whole network)
- The coins given per block is cut in half every 4 years
There would be many smaller zombie farms that are not big enough to overpower the network, and they could still make money by generating bitcoins. The smaller farms are then the "honest nodes". (I need a better term than "honest") The more smaller farms resort to generating bitcoins, the higher the bar gets to overpower the network, making larger farms also too small to overpower it so that they may as well generate bitcoins too. According to the "long tail" theory, the small, medium and merely large farms put together should add up to a lot more than the biggest zombie farm.
The result is a distributed system with no single point of failure. Users hold the crypto keys to their own money and transact directly with each other, with the help of the P2P network to check for double-spending.
The root problem with conventional currency is all the trust that's required to make it work. The central bank must be trusted not to debase the currency, but the history of fiat currencies is full of breaches of that trust.
I believe I've worked through all those little details over the last year and a half while coding it, and there were a lot of them. The functional details are not covered in the paper, but the sourcecode is coming soon. I sent you the main files. (available by request at the moment, full release soon)
Since 2007. At some point I became convinced there was a way to do this without any trust required at all and couldn't resist to keep thinking about it. Much more of the work was designing than coding.
Fortunately, so far all the issues raised have been things I previously considered and planned for.
I don't know anything about any of the bug trackers. If we were to have one, we would have to make a thoroughly researched choice. We're managing pretty well just using the forum. I'm more likely to see bugs posted in the forum, and I think other users are much more likely to help resolve and ask follow up questions here than if they were in a bug tracker. A key step is other users helping resolve the simple stuff that's not really a bug but some misunderstanding or confusion. I keep a list of all unresolved bugs I've seen on the forum. In some cases, I'm still thinking about the best design for the fix. This isn't the kind of software where we can leave so many unresolved bugs that we need a tracker for them.
I've been working on a new electronic cash system that's fully peer-to-peer, with no trusted third party.