Those coins can never be recovered, and the total circulation is less. Since the effective circulation is reduced, all the remaining coins are worth slightly more. It's the opposite of when a government prints money and the value of existing money goes down.
Quotable Satoshi
qsbot@dergigi.com
npub1sats...sfhu
I disseminate the writings of Satoshi Nakamoto, one quote at a time.
The incentive may help encourage nodes to stay honest. If a greedy attacker is able to assemble more CPU power than all the honest nodes, he would have to choose between using it to defraud people by stealing back his payments, or using it to generate new coins. He ought to find it more profitable to play by the rules, such rules that favour him with more new coins than everyone else combined, than to undermine the system and the validity of his own wealth.
The design outlines a lightweight client that does not need the full block chain. In the design PDF it's called Simplified Payment Verification. The lightweight client can send and receive transactions, it just can't generate blocks. It does not need to trust a node to verify payments, it can still verify them itself.
The lightweight client is not implemented yet, but the plan is to implement it when it's needed. For now, everyone just runs a full network node.
It might make sense just to get some in case it catches on. If enough people think the same way, that becomes a self fulfilling prophecy. Once it gets bootstrapped, there are so many applications if you could effortlessly pay a few cents to a website as easily as dropping coins in a vending machine.
When a node finds a proof-of-work, the new block is propagated throughout the network and everyone adds it to the chain and starts working on the next block after it. Any nodes that had the other transaction will stop trying to include it in a block, since it's now invalid according to the accepted chain.
The current system where every user is a network node is not the intended configuration for large scale. That would be like every Usenet user runs their own NNTP server. The design supports letting users just be users. The more burden it is to run a node, the fewer nodes there will be. Those few nodes will be big server farms. The rest will be client nodes that only do transactions and don't generate.
The network is robust in its unstructured simplicity. Nodes work all at once with little coordination. They do not need to be identified, since messages are not routed to any particular place and only need to be delivered on a best effort basis. Nodes can leave and rejoin the network at will, accepting the proof-of-work chain as proof of what happened while they were gone. They vote with their CPU power, expressing their acceptance of valid blocks by working on extending them and rejecting invalid blocks by refusing to work on them. Any needed rules and incentives can be enforced with this consensus mechanism.
The proof-of-work chain is itself self-evident proof that it came from the globally shared view. Only the majority of the network together has enough CPU power to generate such a difficult chain of proof-of-work. Any user, upon receiving the proof-of-work chain, can see what the majority of the network has approved. Once a transaction is hashed into a link that's a few links back in the chain, it is firmly etched into the global history.
Commerce on the Internet has come to rely almost exclusively on financial institutions serving as trusted third parties to process electronic payments. While the system works well enough for most transactions, it still suffers from the inherent weaknesses of the trust based model.
For future reference, here's my public key. It's the same one that's been there since the bitcoin.org site first went up in 2008. Grab it now in case you need it later. 
Bitcoin - Open source P2P money
Bitcoin is an innovative payment network and a new kind of money. Find all you need to know and get started with Bitcoin on bitcoin.org.
The heat from your computer is not wasted if you need to heat your home. If you're using electric heat where you live, then your computer's heat isn't a waste. It's equal cost if you generate the heat with your computer.
If you have other cheaper heating than electric, then the waste is only the difference in cost.
If it's summer and you're using A/C, then it's twice.
Bitcoin generation should end up where it's cheapest. Maybe that will be in cold climates where there's electric heat, where it would be essentially free.
It is possible to verify payments without running a full network node. A user only needs to keep a copy of the block headers of the longest proof-of-work chain, which he can get by querying network nodes until he's convinced he has the longest chain, and obtain the Merkle branch linking the transaction to the block it's timestamped in. He can't check the transaction for himself, but by linking it to a place in the chain, he can see that a network node has accepted it, and blocks added after it further confirm the network has accepted it.
As such, the verification is reliable as long as honest nodes control the network, but is more vulnerable if the network is overpowered by an attacker. While network nodes can verify transactions for themselves, the simplified method can be fooled by an attacker's fabricated transactions for as long as the attacker can continue to overpower the network. One strategy to protect against this would be to accept alerts from network nodes when they detect an invalid block, prompting the user's software to download the full block and alerted transactions to confirm the inconsistency. Businesses that receive frequent payments will probably still want to run their own nodes for more independent security and quicker verification.
It might make sense just to get some in case it catches on. If enough people think the same way, that becomes a self fulfilling prophecy. Once it gets bootstrapped, there are so many applications if you could effortlessly pay a few cents to a website as easily as dropping coins in a vending machine.
If you can keep a node running that accepts incoming connections, you'll really be helping the network a lot. Port 8333 on your firewall needs to be open to receive incoming connections.
Any owner could try to re-spend an already spent coin by signing it again to another owner. The usual solution is for a trusted company with a central database to check for double-spending, but that just gets back to the trust model. In its central position, the company can override the users, and the fees needed to support the company make micropayments impractical.
Bitcoin's solution is to use a peer-to-peer network to check for double-spending. In a nutshell, the network works like a distributed timestamp server, stamping the first transaction to spend a coin. It takes advantage of the nature of information being easy to spread but hard to stifle.
Bitcoin addresses you generate are kept forever. A bitcoin address must be kept to show ownership of anything sent to it. If you were able to delete a bitcoin address and someone sent to it, the money would be lost. They're only about 500 bytes.
At first, most users would run network nodes, but as the network grows beyond a certain point, it would be left more and more to specialists with server farms of specialized hardware. A server farm would only need to have one node on the network and the rest of the LAN connects with that one node.
The incentive can also be funded with transaction fees. If the output value of a transaction is less than its input value, the difference is a transaction fee that is added to the incentive value of the block containing the transaction. Once a predetermined number of coins have entered circulation, the incentive can transition entirely to transaction fees and be completely inflation free.
At first, most users would run network nodes, but as the network grows beyond a certain point, it would be left more and more to specialists with server farms of specialized hardware. A server farm would only need to have one node on the network and the rest of the LAN connects with that one node.
The traditional banking model achieves a level of privacy by limiting access to information to the parties involved and the trusted third party. The necessity to announce all transactions publicly precludes this method, but privacy can still be maintained by breaking the flow of information in another place: by keeping public keys anonymous. The public can see that someone is sending an amount to someone else, but without information linking the transaction to anyone. This is similar to the level of information released by stock exchanges, where the time and size of individual trades, the "tape", is made public, but without telling who the parties were.