Quotable Satoshi's avatar
Quotable Satoshi
qsbot@dergigi.com
npub1sats...sfhu
I disseminate the writings of Satoshi Nakamoto, one quote at a time.
There will be transaction fees, so nodes will have an incentive to receive and include all the transactions they can. Nodes will eventually be compensated by transaction fees alone when the total coins created hits the pre-determined ceiling.
Announcing version 0.3 of Bitcoin, the P2P cryptocurrency! Bitcoin is a digital currency using cryptography and a distributed network to replace the need for a trusted central server. Escape the arbitrary inflation risk of centrally managed currencies! Bitcoin's total circulation is limited to 21 million coins. The coins are gradually released to the network's nodes based on the CPU power they contribute, so you can get a share of them by contributing your idle CPU time.
The proof-of-work chain is a solution to the Byzantine Generals' Problem. I'll try to rephrase it in that context. A number of Byzantine Generals each have a computer and want to attack the King's wi-fi by brute forcing the password, which they've learned is a certain number of characters in length. Once they stimulate the network to generate a packet, they must crack the password within a limited time to break in and erase the logs, otherwise they will be discovered and get in trouble. They only have enough CPU power to crack it fast enough if a majority of them attack at the same time. They don't particularly care when the attack will be, just that they all agree. It has been decided that anyone who feels like it will announce a time, and whatever time is heard first will be the official attack time. The problem is that the network is not instantaneous, and if two generals announce different attack times at close to the same time, some may hear one first and others hear the other first. They use a proof-of-work chain to solve the problem. Once each general receives whatever attack time he hears first, he sets his computer to solve an extremely difficult proof-of-work problem that includes the attack time in its hash. The proof-of-work is so difficult, it's expected to take 10 minutes of them all working at once before one of them finds a solution. Once one of the generals finds a proof-of-work, he broadcasts it to the network, and everyone changes their current proof-of-work computation to include that proof-of-work in the hash they're working on. If anyone was working on a different attack time, they switch to this one, because its proof-of-work chain is now longer. After two hours, one attack time should be hashed by a chain of 12 proofs-of-work. Every general, just by verifying the difficulty of the proof-of-work chain, can estimate how much parallel CPU power per hour was expended on it and see that it must have required the majority of the computers to produce that much proof-of-work in the allotted time. They had to all have seen it because the proof-of-work is proof that they worked on it. If the CPU power exhibited by the proof-of-work chain is sufficient to crack the password, they can safely attack at the agreed time. The proof-of-work chain is how all the synchronisation, distributed database and global view problems you've asked about are solved.
If you're having trouble with the inflation issue, it's easy to tweak it for transaction fees instead. It's as simple as this: let the output value from any transaction be 1 cent less than the input value. Either the client software automatically writes transactions for 1 cent more than the intended payment value, or it could come out of the payee's side. The incentive value when a node finds a proof-of-work for a block could be the total of the fees in the block.
The proof-of-work is a Hashcash style SHA-256 collision finding. It's a memoryless process where you do millions of hashes a second, with a small chance of finding one each time. The 3 or 4 fastest nodes' dominance would only be proportional to their share of the total CPU power. Anyone's chance of finding a solution at any time is proportional to their CPU power.
A transaction will quickly propagate throughout the network, so if two versions of the same transaction were reported at close to the same time, the one with the head start would have a big advantage in reaching many more nodes first. Nodes will only accept the first one they see, refusing the second one to arrive, so the earlier transaction would have many more nodes working on incorporating it into the next proof-of-work. In effect, each node votes for its viewpoint of which transaction it saw first by including it in its proof-of-work effort. If the transactions did come at exactly the same time and there was an even split, it's a toss up based on which gets into a proof-of-work first, and that decides which is valid.
When a node receives a block, it checks the signatures of every transaction in it against previous transactions in blocks. Blocks can only contain transactions that depend on valid transactions in previous blocks or the same block. Transaction C could depend on transaction B in the same block and B depends on transaction A in an earlier block.
As a thought experiment, imagine there was a base metal as scarce as gold but with the following properties: - boring grey in colour - not a good conductor of electricity - not particularly strong, but not ductile or easily malleable either - not useful for any practical or ornamental purpose and one special, magical property: - can be transported over a communications channel If it somehow acquired any value at all for whatever reason, then anyone wanting to transfer wealth over a long distance could buy some, transmit it, and have the recipient sell it. Maybe it could get an initial value circularly as you've suggested, by people foreseeing its potential usefulness for exchange. (I would definitely want some) Maybe collectors, any random reason could spark it. I think the traditional qualifications for money were written with the assumption that there are so many competing objects in the world that are scarce, an object with the automatic bootstrap of intrinsic value will surely win out over those without intrinsic value. But if there were nothing in the world with intrinsic value that could be used as money, only scarce but no intrinsic value, I think people would still take up something. (I'm using the word scarce here to only mean limited potential supply)
Excellent choice of a first project, nice work. I had planned to do this exact thing if someone else didn't do it, so when it gets too hard for mortals to generate 50BTC, new users could get some coins to play with right away. Donations should be able to keep it filled. The display showing the balance in the dispenser encourages people to top it up. You should put a donation bitcoin address on the page for those who want to add funds to it, which ideally should update to a new address whenever it receives something.
I would be surprised if 10 years from now we're not using electronic currency in some way, now that we know a way to do it that won't inevitably get dumbed down when the trusted third party gets cold feet.
A rational market price for something that is expected to increase in value will already reflect the present value of the expected future increases. In your head, you do a probability estimate balancing the odds that it keeps increasing.
A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution.
If SHA-256 became completely broken, I think we could come to some agreement about what the honest block chain was before the trouble started, lock that in and continue from there with a new hash function.
Nodes always consider the longest chain to be the correct one and will keep working on extending it. If two nodes broadcast different versions of the next block simultaneously, some nodes may receive one or the other first. In that case, they work on the first one they received, but save the other branch in case it becomes longer. The tie will be broken when the next proof-of-work is found and one branch becomes longer; the nodes that were working on the other branch will then switch to the longer one.
Writing a description for this thing for general audiences is bloody hard. There's nothing to relate it to.
Eventually at most only 21 million coins for 6.8 billion people in the world if it really gets huge. But don't worry, there are another 6 decimal places that aren't shown, for a total of 8 decimal places internally. It shows 1.00 but internally it's 1.00000000. If there's massive deflation in the future, the software could show more decimal places.
To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof-of-work system similar to Adam Back's Hashcash, rather than newspaper or Usenet posts. The proof-of-work involves scanning for a value that when hashed, such as with SHA-256, the hash begins with a number of zero bits. The average work required is exponential in the number of zero bits required and can be verified by executing a single hash.
The proof-of-work is a Hashcash style SHA-256 collision finding. It's a memoryless process where you do millions of hashes a second, with a small chance of finding one each time. The 3 or 4 fastest nodes' dominance would only be proportional to their share of the total CPU power. Anyone's chance of finding a solution at any time is proportional to their CPU power.
The solution we propose begins with a timestamp server. A timestamp server works by taking a hash of a block of items to be timestamped and widely publishing the hash, such as in a newspaper or Usenet post. The timestamp proves that the data must have existed at the time, obviously, in order to get into the hash. Each timestamp includes the previous timestamp in its hash, forming a chain, with each additional timestamp reinforcing the ones before it.